AMEISE Workshop Emden 2007 Einleitung

A. Bollin, R. Mittermeir Software Engineering und Soft Computing Alpen-Adria Universität Klagenfurt

AMEISE Workshop Emden 5.-7. Juli 2007

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Eckdaten

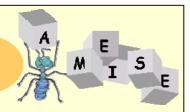
Zeitplan

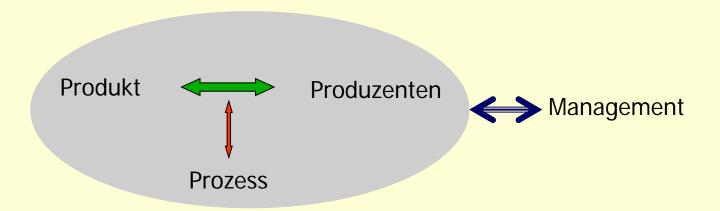
- 5. Juli 2007 (Do.)
 - 09:00 10:45 Motivation/Theorie
 - 11:15 12:45 AMEISE Umgebung
 - 14:15 15:45 Projektplanung
- 6. Juli 2007 (Fr.)
 - 08:30 12:45 AMEISE Simulation I
- 7. Juli 2007 (Sa.)
 - 09:00 11:00 Assessment/Nachbesprechung

2te AMEISE Simulation (unbetreut)

AMEISE Workshop Emden 5.-7. Juli 2007

3 / 69

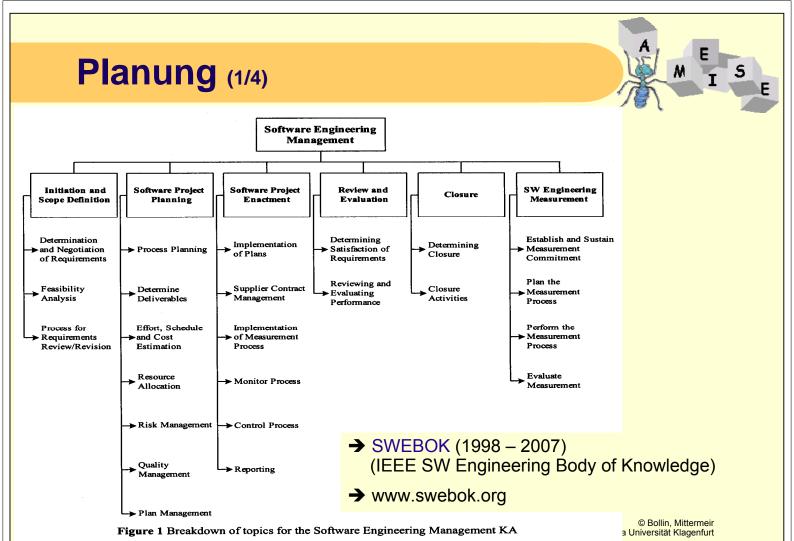

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

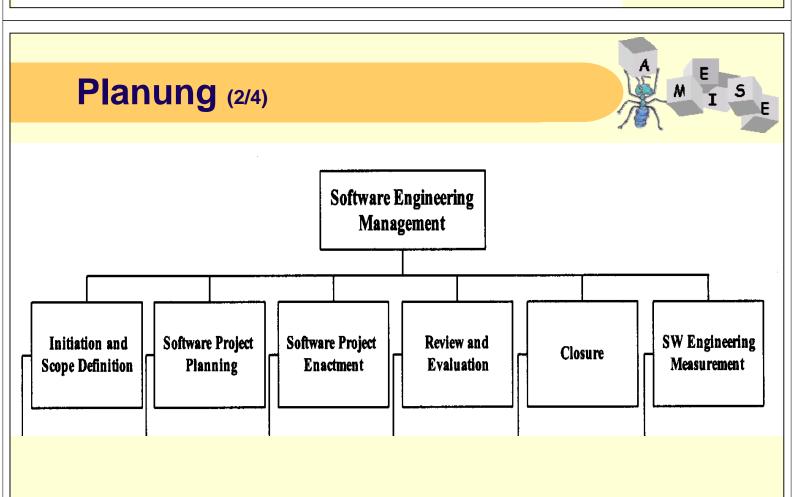

Inhalt (Teil I)

- Projektmanagement (basierend auf dem Foliensatz der VK "IT Projektmanagement and Change", © R. Mittermeir, 2006/7)
 - Allgemeine Aspekte
 - * Planung
 - * Produkt
 - * Prozess
 - * SW-Projekt
 - Kostenschätzung
 - * Problembereiche
 - * Kosten
 - * Schätzung / Modelle
 - * Function Points
 - Daumenregeln

Aspekte (1/3)

AMEISE Workshop Emden 5.-7. Juli 2007


5/69


© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Aspekte (2/3)

- Basis für Planung
 - Eckpunkte des Projektmanagements
 - Prozessmodelle
- Projektplanung
 - Ablaufplanung
 - * Vorgehensmodelle (Wasserfallmodell, Spiralmodell, Rapid Application Development/X-Prog., ...)
 - Aufwandsplanung
 - * Grundfragen der Aufwandsschätzung, Schätzgrößen und Metriken
 - * Aufwandsmodelle (Function Point Methode, COCOMO, ...)

Planung (3/4)

Software Project Planning

➤ Process Planning

Determine
Deliverables

Effort, Schedule

and Cost
Estimation

Resource Allocation

► Risk Management

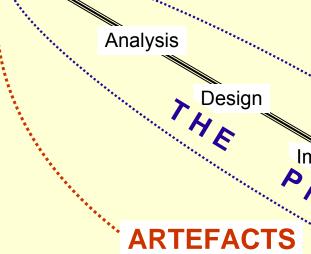
Plan Management

Quality Management SWEBOK: "Balanced amalgam of technical issues and peoples related issues"

- Leistungen definieren!!!
 - Arbeiten?
 - * WANN, in WELCHER Qualität, von WEM
 - Wer definiert diese?
 - * Entwicklungsprozess (ISO 9000, CMM, SPICE, ...)
 - * Kunde
- Planung, Schätzung, Zuordnung von Betriebsmittel:
 - Ein Netz an komplexen Zusammenhängen!
- Zum Schluss: Entscheidung über das Prozessmodell

nden

9 / 69


© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Management

Planung (4/5)

Conception

Implementation Test

SS

Configuration Management

© Bollin, Mittermeir

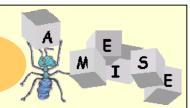
Alpen-Adria Universität Klagenfurt

Produkt (1/2)

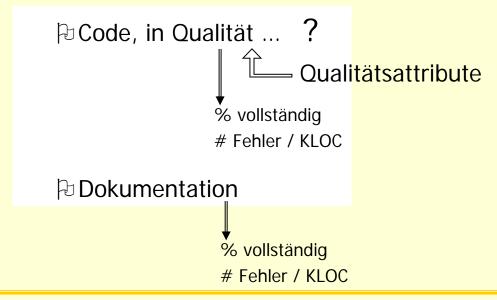
Auf dem Weg zum Software Produkt: Entwickler

spezifische Basisleistung von Entwickler(n)

- andere Aufgaben / Tätigkeiten sachbezogene Basisleistung
- Fehler sachbezogene Nettoleistung
- Fehlerkorrektur


sachbezogene Effektivleistung

AMEISE Workshop Emden 5.-7. Juli 2007


11 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt


Produkt (2/2)

Lieferbare Ergebnisse: ("deliverable")

Ablaufplanung (1/4)

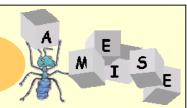
Prozess-Grobstruktur:

WAS

wird WANN

von WEM

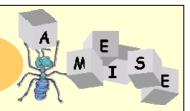
gemacht


- U-level Modelle [Humphrey 89]:
 - Lineare Phasenmodelle (Wasserfall)
 - V-model
 - RUP
 - Incrementelle Modelle
 - ...

AMEISE Workshop Emden 5.-7. Juli 2007

13 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt


Ablaufplanung (2/4)


- Welche Kriterien bestimmen den Phasenübergang?
 - Welche "deliverables" ...
 - ... in welchem Zustand?
 - * Was muss vorhanden sein?
 - * In welchem Zustand muss es vorliegen?

 - wie "richtig"
 → Verfahren f. Def v. "richtig"?
 - . wie geprüft?
- Aus welchen Schritten setzt sich die Phase zusammen?

Ablaufplanung (3/4)

Kapazitätsplanung

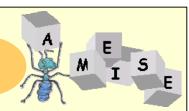
Aufwandsschätzung

"Arbeitsvorbereitung"

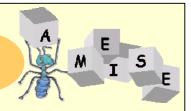
AMEISE Workshop Emden 5.-7. Juli 2007

15 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt


Ablaufplanung (4/4)

- Gliederung des Projekts in eine Hierarchie von Arbeitspaketen
 - Work Breakdown Structure
 - * Funktions- bzw. Aufgabengliederung als bestimmendes Element
 - Product Breakdown Structure
 - * Produktgliederung als bestimmendes Element
 - * PRINCE
- Schlüsselfrage: Abhängigkeiten
- Methoden:
 - Balken-Diagramme: zeitlicher Verlauf, ohne Abhängigkeitsdarstellung
 - CPM (like) Methoden: Aktivitäten als Zustandsübergänge
 PERT (like) Methoden: Teilaufgaben als zeitlich verschiebbare Knoten

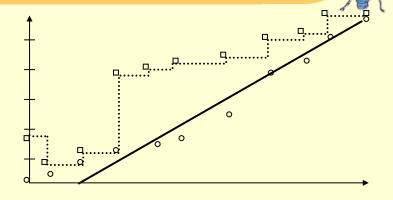

Fragen ?

Kostenschätzung

- Was kostet "das Ganze"?
 - zuerst: Was ist "das Ganze"?
- Wieviel kostet "ein bisschen Mehr"?
 - warum?
- Wann stellen wir diese Frage?
- Wozu stellen wir diese Frage?
- Wie oft stellen wir diese Frage?

Problembereiche (1/2)

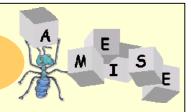
- Warum unterschätzen wir Software-Projekte (und was können wir dagegen tun)
 - Schätzen oder Raten
 - Schätzgrößen und Metriken
 - Aufwandsmodelle
 - * Basisüberlegungen
 - * Mikro-Modelle
 - * Makro-Modelle


AMEISE Workshop Emden 5.-7. Juli 2007

19 / 69

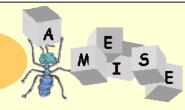
© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Problembereiche (2/2)


- □ geschätzte Kosten
- o tatsächliche Kosten

Probleme für

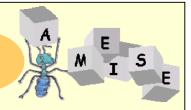
- Kunde:
 - * Umstellungsplanung
 - * Kauf / Verkauf von Geräten
 - * Abschluss / Ablauf von Verträgen
 - * .
- Entwickler:
 - * Überstunden
 - * Ausbrennen
 - *
- Finanzierung
- andere Verträge => Domino-Effekt


Kostenschätzung (1/3)

Warum unterschätzen wir (SW-) Entwicklungsaufwand?

Wie lange benötigen Si	e, um	
 mit der Bahn nach 	Hamburg zu fahren	
 mit dem Auto nach 	Hamburg zu fahren	
 zu Fuß zum Haupt 	bahnhof zu gehen	
 eine Seminararbeit 	t in zu verfassen	
 sich für den AMEIS 	SE Workshop vorzubere	eiten
ein Programm zur	Verwaltung Ihres Term	inkalenders zu entwickeln
AMEIOE W. I. I. E. I.		
AMEISE Workshop Emden 57. Juli 2007	21 / 69	© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Kostenschätzung (2/3)


- Schätzung des Inhalts/Umfangs der Aufgabe
- Schätzung des Schwierigkeitsgrades der Aufgabe

Interaktion!!!

- Schätzung unserer Problemlösungsfähigkeit
- Schätzung unserer Verfügbarkeit
- Berücksichtigung des eingesetzten "Materials"
- Berücksichtigung der eingesetzten Instrumente / Werkzeuge
- Berücksichtigung von Randbedingungen der Entwicklung (z.B. Anforderungsvolatilität, turnover, ..., Jahreszeit)

Pseudo-Paradoxon:	(, , , , , , , , , ,
Aktivität	Assembler-Prog.	3-GL-Programm in Wochen
Entwurf	4	4
Codierung	4	2
Test	4	2
Dokumentierung	2	2
Management / Šupport	<u>2</u>	<u>2</u>
Aufwand	16 (4M)	12 (3M)
Lines of Code	2000 ` ´	500
LOC p. PM′	500	167

Kostenschätzung (3/3)

Wie viel Tage hat ein Monat/ein Jahr?

Das Jahr gliedert sich in:

- Feiertage,
- Urlaub
- Krankheit
- dringende Aushilfstätigkeiten
- Schulungen
- **–** ..
- Arbeit am Projekt

Die Arbeit (von Programmierern) am Projekt gliedert sich in:

[Bell Lab time and motion study]

- 32 % job communication
- 16 % read programs, manuals, ...
- **13** % write programs
 - 6 % training
 - 5 % mail, misc. documentation
- 15 % misc. (walking offsite, ...)
- 13 % personal

AMEISE Workshop Emden 5.-7. Juli 2007

23 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Schätzgrößen und Metriken (1/4)

- Wieviel kostet die Projektdurchführung?
 - von welcher bis zu welcher Phase?
 - wessen Kosten?
- Wie lange benötigen wir für das Projekt?

<Tage, Wochen, Jahre>

Wieviel Aufwand ist mit dem Projekt verbunden? < Mann-/Personal-

-Tage,-Monate>

Wieviel Mitarbeiter benötigt / verträgt das Projekt

(in Phase ____)?

<# Personen>

<S. e. \$. ...>

Wie groß wird das Programm?

<# Dateien, # Funktionen>
<Lines of Code>

Wie wirkt sich "_diese_" Änderung auf den

Gesamtaufwand aus?

"I have one lamp by which my feet are guided and that is the lamp of experience;
 I know of no way of judging the future but by the past."

[Patrick Henry]

Schätzgrößen und Metriken (2/4)

direkte Zeitschätzung:

Bei Aufgaben, die unsere geistigen Fähigkeiten involvieren zu gefährlich!

=> Ziel: Vermeiden von emotionsgeladenen Primär-Schätzgrößen

Lines of Code (LOC, KLOC; KDSI)

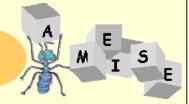
Vorsicht: Exakte Definition konstant halten ? written / delivered ?

- * Programmiersprache (insb. Sprachgeneration)
- * Zählen von Kommentaren
- * Zählen von Deklarationen
- * Zählen von Includes
- * Zählen von Reused Components
- * Beurteilung von Vererbung

Personenmonate, Mannmonate (PM, MM)

(ManMonth, ProgrammerMonth, SoftwarePersonellMonth, ..)

Monat

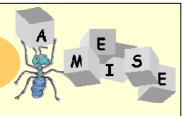

Vorsicht: Exakte Definition konstant halten; Definitionen sind länder- und kulturspezifisch!

AMEISE Workshop Emden 5.-7. Juli 2007

25 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Schätzgrößen und Metriken (3/4)


Methoden der Praxis:

- Top-Down Schätzung "raten" auf der Basis globaler Erfahrungen
- Verhältnisschätzung
 VORSICHT: diseconomies of scale
- Gleichheit / Unterschiedsschätzung
 Basis: Zerlegung und Klassifikation
- Standard-Werte "Preisliste" vgl. mit klassischem Ingenierswesen
- Was der Kunde verträgt
 no comment!
- Damit wir den Auftrag noch "ergattern" no comment!
- Schätzung + Überziehung (z.B.: Schätzung * 2) no comment!
- Schätzung Nachforderung no comment!
- Bottom-Up Schätzung
- · modellbasierte Schätzungen

VORSICHT:

Schätzung von Wartungsaufwand = |= Schätzung für Neuentwicklung

Schätzgrößen und Metriken (4/4)

Grundannahme: Man verschätzt sich, aber wenn man das Problem konsequent durchdenkt, schätzt man besser

3 Schätzwerte:

- * Untergrenze u
- * Modus m
- * Obergrenze c

Erwartungswert_{KDSI}: μ_M := (u + 4m + o) / 6

Streuung_{KDSI}: $\sigma_M := (|o-u|)/6$

AMEISE Workshop Emden 5.-7. Juli 2007

27 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Aufwandsmodelle

- · Mikro-Modelle
 - Halstead Methode
 - McCabes Komplexitätsmodell
 - Objektorientierte Mikro-Modelle

_

- Makro-Modelle
 - Regression aus Analyseparametern
 - Function Point Methode
 - Putnam's Rayleigh Curve Model
 - COCOMO

Function Points (1/6)

Function Points Methode

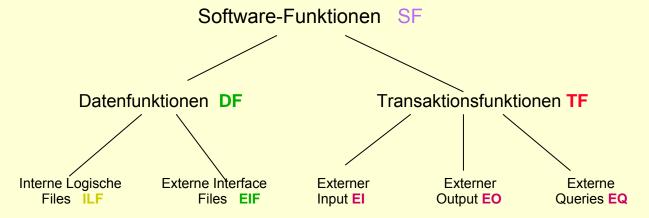
Heute gängigstes Verfahren zur Aufwandsschätzung in frühen Projektphasen

- * Entwickelt bei IBM (1974 1979) [Albrecht, 79; Albrecht, 83]
- * Weiterentwicklung und Standardisierung durch die IFPUG (Internat. Function Point User Group)
- * Anwendungsbereich: klassische Datenverarbeitungsprojekte; übertragbar auf moderne Entwicklungen
- * Benutzersicht als Ausgangsbasis (Analysemodell)
- * Function Point ::= abstraktes Maß für die Funktionalität des Systems
- * Einfach handhabbar, vielerorts beschrieben [Putnam 92, Garmus 96, ...]
- * methoden- und technologie-unabhängig
- * Für technische Anwendungen (Numerik, Algorithmik, Real-Time, ...) nicht geeignet (zu einseitig auf Daten bzw. I/O fokussiert)

AMEISE Workshop Emden 5.-7. Juli 2007

29 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt


Function Points (2/6)

Ausgangsbasis für die Schätzung:

- "sichtbare" Funktionalität des Systems
- Dateibehandlung (verallgemeinerbar auf: Schnittstellenbehandlung)

Aufbau:

Function Points (3/6)

Ausgangsparameter

* # int. logische Files: Wesentliche interne Datenstrukturen.

* # ext. Interfaces: Typen unterschiedlicher Schnittstellen zu

anderen Systemen.

* # ext. Inputs: Typen unterschiedlicher Benutzerdaten

/-steuerungen die ins System gehen.

* # ext. Outputs: Typen unterschiedlicher Benutzerdaten

/-steuerungen die das System verlassen.

* # Abfragen: Typen unterschiedlicher Benutzereingaben

die eine unmittelbare Antwort verlassen.

AMEISE Workshop Emden 5.-7. Juli 2007

31 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Function Points (4/6)

Vorgangsweise:

- 1. Zählart bestimmen
- 2. Anwendungsgrenze bestimmen
 Systemgrenze aus Sicht der/des Nutzers; implementierungsunabhängig
 ??use cases??
- 3. Datenfunktionen und deren Komplexität bestimmen
- 4. Transaktionsfunktionen und deren Komplexität bestimmen
- 5. Rohbewertung ermitteln (UFPs)
- 6. Wertanpassungsfaktor (WAF) bestimmen (AFPs)
- 7. Endbewertung, Umrechnungen

Zählarten:

- Entwicklungsprojekte
- Anpassungsprojekte
- Anwendungen eines großen Systems

Function Points (5/6)

- Systemcharakteristika
 14 Anwendungs-Charakteristiken (siehe [Albrecht 83])
- Transformation in SLOC (programmiersprachenabhängig!)

zB: (siehe [Capers 95])

Assembler	320	APL	32
С	150	SmallTalk	21
Pascal	91	Spreadsheet	6
Java	53	Ada	49
SQL	12		

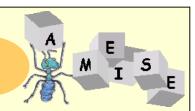
 Transformation in Personalmonate (ebenfalls programmiersprachen- und umgebungsabhängig)

AMEISE Workshop Emden 5.-7. Juli 2007

33 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Function Points (6/6)



Zusammenfassung:

- Schätze Systemgröße (UFP)
- Korrigiere um techn. Komplexität (AFP)
- Berechne Zeitdauer und Aufwand mit sprachspezifischen Tabellen
- Verteile Dauer, Aufwand (Effort) über Phasen
- Adjustiere um Risikofaktoren
- Berücksichtige Personalverfügbarkeit

Fragen ?

Daumenregeln (1/4)

VORSICHT: Diese Daumenregeln sind keine Berechnungs- oder Planungsrichtlinien.

Sie können aber zur ersten Orientierung, insbesondere zur Plausibilitätsprüfung von Werten, die von Planungswerkzeugen berechnet werden, verwendet werden.

Daumenregeln (2/4)

D1:	1 UFP ~	~ 0.1 KDSI	~ 100 LOC
-----	---------	------------	-----------

Range:	ADA 83	71	ADA 95	49
(300 – 20)	С	128	C++	55
	FORTRAN 77	107	FORTRAN 95	71
	UNIX Shell Script	107	Java	53

D2: (# UFP)^{1,15} ~ #S Dokumentation

sehr kundenspezifisch - kann teuer kommen!

Umso länger die Entwicklung dauert, umso mehr zusätzliche Anforderungen fallen dem Kunden ein.

AMEISE Workshop Emden 5.-7. Juli 2007

37 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Daumenregeln (3/4)

D4: # Testfälle \sim (# UFP)^{1,2}

Nimmt man an, dass jeder Testfall n-mal (z.B. 4 mal) ausgeführt wird, lässt sich daraus die Testdauer schätzen.

D5: $(\# UFP)^{1,25} \sim \# vermutbarer Fehler$

Bugs in "mayor deliverables" (Requ, Design, Code, User-Docu). Bei Wartungsprogrammierung ist's mehr: ~ 1,27

D6: Review/Inspektion findet 30 % d. Fehler

Dies begründet den Unterschied zwischen Fehler-Entdeckungsraten von 85 % (Industriestandard) und 99 % (Spitzen)

Daumenregeln (4/4)

(# UFP)^{0,4} ~ #m Entwicklungsdauer D7:

> Dies ist hier die Zeitspanne zwischen Beginn der Anforderungsanalyse und erster Auslieferung (non-real-time SW).

(# UFP)/150 ~ #Personal(Entwicklung) D8:

Vorsicht: "Rechtecks-Staffing" ist ineffizient

D9: (# UFP)/500 ~ #Personal(Wartung)

Vorsicht: "Rechtecks-Staffing" ist ineffizient

 $2,4 \times (KLOC)^{1.05} \sim \#MM$ D10:

COCOMO (Basic)

AMEISE Workshop Emden 5.-7. Juli 2007

39 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Referenzen

Albrecht A.J.: "Measuring Application development" Proc. of IBM Applications Development Joint SHARE/GUIDE Symposium, Moterey, CA, pp. 83 - 92, 1979 [Albrecht 79]

Albrecht A.J., Gaffney J.: "Software function, source lines of code and development effort prediction" IEEE Trans. on Software Engineering, SE-9(6), pp. 639 - 648, 1983. [Albrecht 83]

[Basili 80] Basili V.R.: Tutorial on Models and Metrics for Software Management and Engineering, IEEE CS Press, 1980

[Boehm 81] Boehm B.: Software Engineering Economics; Prentice-Hall, 1981

[Boehm 00] Boehm B. W. et al.: Software Cost Extimation with COCOMO II, Prentice Hall, 2000.

Briand L.C., Wüst J: Modeling Development Effort in Object-Oriented Systems Usin g Design Properties; IEEE Trans on Software Eng. Vol. 27 (11), Nov. 2001, pp. 963-986. [Briand 01]

[CK 94] Chidamber S.R-., Kemerer C.F.: A Metrics Suite fopr Object Oriented Design, IEEE Trans. on Software Eng., 20 (6), June 1994, pp.

Conte S., Dunsmore H., Shen V.: "Software Engineering Metrics and Models"; Benjamin/Cummings, 1986 [Conte 86]

Costagliola G., Ferrucci F., Tortora G, Vitiello G.: Class Point: An Approach for the Size Estimation of Object-Orfiented Systems; IEEE Trans. on Software Eng., 31 (1), Jan 2005, pp 52 - 74. [Costagliola 05]

[Fenton 97] Fenton N.E., Pfleeger S.L.: "Software Metrics: A Rigorous & Practical Approach"; 2nd ed, Thomson, 1997

Garmus D., Herron D.: "Measuring the Software Process - a practical guide to functional measurements"; Yourdon Press, Prentice [Garmus 96]

[Halstead 77] Halstead M.H.: "Elements of Software Science"; North Holland, 1977

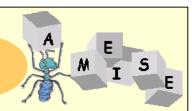
[Jones 86] Jones Capers: "Programming Productivity"; McGraw-Hill, 1986

[McCabe 76] McCate T.: "A software complexity measure" IEEE Trans. on Software Engineering, SE-2(4), pp. 308-320, 1976.

[Parikz 84] Parikh G.: "Programmer Productivity"; Reston, 1984

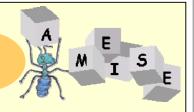
[Putnam 78] Putnam L.: "A General Empirical Solution to the Macro Software Sizing and Estimating Problem"; IEEE Trans. On Software

Engineering SE-4(4), pp. 345 - 361, 1978


[Putnam 80] Putnam L.: "Tutorial: Software Cost Estimating and Life-Cycle Control: Getting the Software Numbers"; IEEE-CS Press, 1980

[Putnam 92] Putnam L., Myers W.: "Measures for Excellence: Reliable Software on Time, within Budget"; Yourdon, 1992

[Wolverton 84] Wolverton R.W. "Software Costing" in Vick C.R., Ramamoorthy C.V.: "Handbook of Software Engineering"; van Nostrand Reinhold,

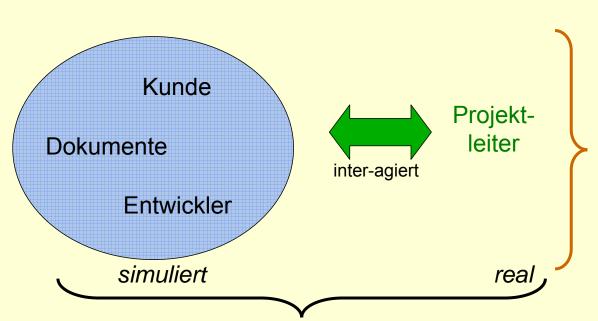

Fragen ?

Inhalt (Teil II)

- AMEISE Simulation (basierend auf dem Foliensatz der VK "IT Projektmanagement and Change", A. Bollin, 2006)
 - Ameise
 - * Projektbeschreibung
 - * Architektur
 - Simulationsmodelle
 - * Qualitätssicherung
 - * 200 AFP Projekt
 - Aufgabenstellung
 - Simulationshinweise
 - * Besonderheiten
 - * Start und Ende

Projektbeschreibung

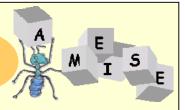
- A Media Education Initiative for Software Engineering
- Motivation
 - Theoretisches Wissen über Projektmanagement erfahrbar machen, Erfahrungen für die Praxis sammeln
 - Prototyp "SESAM" der Uni Stuttgart erlaubt experimentelles Lernen in Simulationsumgebung
- In interuniversitärer Zusammenarbeit (Stuttgart, Klagenfurt, Linz, Technikum) wurden folgende Punkte im Rahmen des Ameise-Projekts realisiert:
- → ~150.000 LOC (Ada, Java, C)
- → 40 Mitarbeiter in KLU, 10 Jahre in Stuttgart, 6 Jahre in Klagenfurt

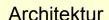

AMEISE Workshop Emden 5.-7. Juli 2007

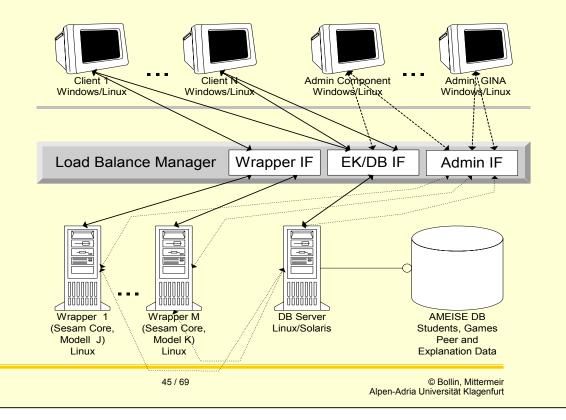
43 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Architektur (1/4)

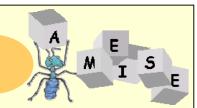


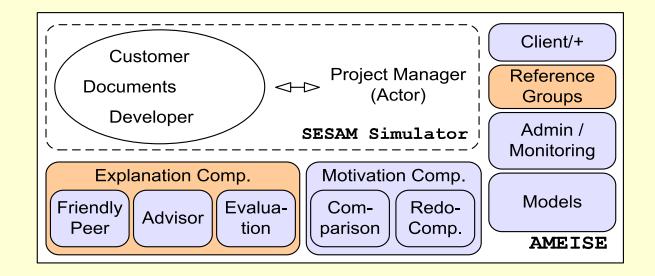


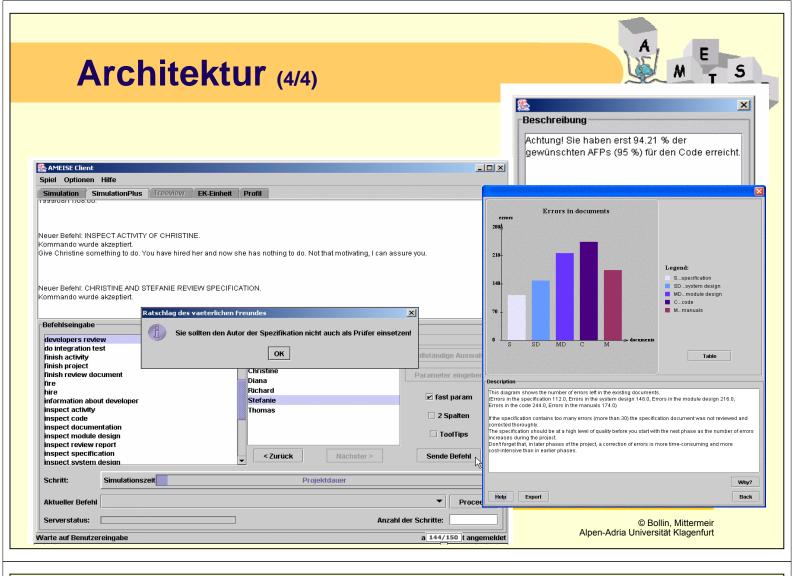

beobachten, anleiten, beraten

beurteilen, vergleichen, experimentieren

Architektur (2/4)






Architektur (3/4)

AMEISE Workshop Emden 5.-7. Juli 2007

Komponenten

Modelle (1/2)

- SESAM ist ein Simulationssystem, das ein spezifisches Modell interpretiert
- Objekte und Beziehungen aus realen Projekten sind auf das Projektmodell von SESAM abgebildet
- Abbildung durch die Modellbeschreibungssprache (SESAM-2)
- Unser Modell: QS/QA-Modell
 - Software-Entwicklung mit spezifischem Fokus auf Qualitätssicherung (Quality Assurance)
 - Das QS-Modell konzentriert sich vor allem auf
 - * konstruktive Maßnahmen
 - * analytische Maßnahmen
 - * korrigierende Maßnahmen

Modelle (2/2)

- Ziel: Nutzen verschiedener Maßnehmen erfahren und lernen, diese sinnvoll einzusetzen
- Mit Hilfe des QS- Modells sollen folgende Projektmanagement-Funktionen eingeübt werden
 - Projektplanung
 - Stellenbesetzung (d.h. richtige Mitarbeiter auswählen und entsprechend ihrer Qualifikation einsetzen)
 - Projektführung
- QS-Modell bildet kleine bis mittlere Auftragsprojekte mit einem Umfang von 200 (bis 1200) AFPs ab
- QS-Modell unterstützt aktivitäten-orientierte Prozessmodelle
 - positiv: Vorgehen nach dem Wasserfallmodell
 - negativ: Code-and-Fix

AMEISE Workshop Emden 5.-7. Juli 2007

49 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Aufgabenstellung (1/4)

- Ihre Aufgabe: Ein 200 AFP-Projekt soll
 - mit Auswahl aus verfügbarem Personal,
 - innerhalb der vereinbarten Bedingungen
 - * Code
 - 95 % Fertigstellung,
 - < 12 Fehler pro 1000 LOC
 - * Handbuch
 - · 95 % vollständig
 - · max. 1 Fehler auf jeder zweiten Seite
 - * Dauer
 - Beginn 1.10.2007, Ende spätestens 5.7.2007
 - innerhalb des vorgegebenen Budgets (225.000 €) fertig gestellt werden

Aufgabenstellung (2/4)

"Spielregeln:"

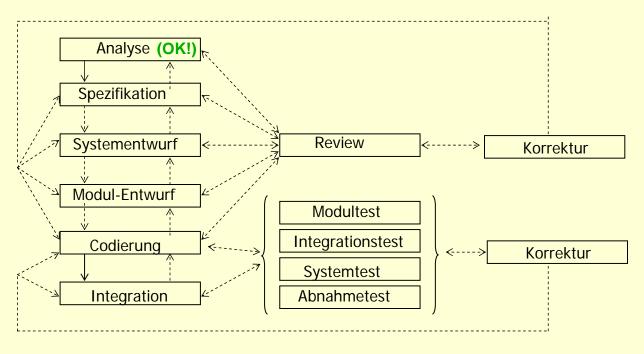
- Jedes Zwischenprodukt will/kann geprüft werden
- Prüfergebnisse erfordern Aufmerksamkeit
- · Aspekte:
 - Niemand ist sein eigener Prüfer
- Problem:
 - Reviews sind keine Vollzeit-Beschäftigung
 - Modell kennt keine Teilzeit-Arbeitskräfte

AMEISE Workshop Emden 5.-7. Juli 2007

51 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Aufgabenstellung (3/4)



Entwicklungsprozess:

- → PhasenModell / Wasserfall
 - Analyse (Analysis) bereits erledigt !!!!
 - Spezifikation (Specification)
 - System-Design (Systementwurf/Grobdesign)
 - Modul-Design (Modulentwurf/Feindesign)
 - Codierung (Coding)
 - Modul-Test (Module test)
 - Integration (Integration test)
 - Systemtest (System test)
 - Abnahme-Test (Acceptance Test)

Aufgabenstellung (4/4)

AMEISE Workshop Emden 5.-7. Juli 2007

53 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Lernziele

- Sie sollen gegenüber dem Projekt dieselbe Rolle einnehmen wie ein realer Projektleiter
 - selbständiges Planen und Durchführen von Software-Projekten
 - trainieren wichtiger Projektmanagement-Funktionen
- Erlernen von Entscheidungsfähigkeit unter unvollständiger Information
 - Projektleiter müssen ihre Entscheidungen in der Regel bei nur geringer Information über das Projekt treffen
 - Studenten sollen schwierige Situationen erfahren und lernen diese zu meistern
- Entscheidungsfindung in komplexen Entscheidungssituationen
 - typische Schwierigkeiten bei der Planung und Kontrolle von Projekten erleben

Fragen ?

AMEISE Workshop Emden 2007

Simulationshinweise

QS200 Modell (200 AFP) QS60 Modell (60 AFP)

Hinweise (1/11)

Personaleinsatz

- Vorsicht: Mitarbeiter kosten Geld ...
 - * auch wenn sie nicht beschäftigt sind!
 - * Man kann sie in den Pool der Firma entlassen,
 - und sie sind deswegen nicht böse, aber
 - finden vielleicht eine andere Beschäftigung (1-60 Tage)

- Voraussetzungen

- * Anweisungen können natürlich nur ans eigene Personal gegeben werden.
- * Bevor man jemanden entlässt, muss die Arbeit abgeschlossen oder mindestens beendet werden.

AMEISE Workshop Emden 5.-7. Juli 2007

57 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt


Hinweise (2/11)

Dokumente

- Qualifizierte Mitarbeiter leisten bessere Arbeit.
- Reviews benötigen Zeit (1/2 Tag). Man kann sie neben der "Hauptaufgabe" durchführen, aber auch die Koordination mehrer Aufgaben frisst Zeit.
- Mehrere Personen, die an einer Aufgabe arbeiten, müssen sich abstimmen. Die Kommunikation kostet natürlich Zeit.

Hinweise (3/11)

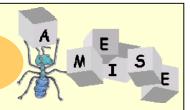
Reviews

- Ein Autor eines Dokuments findet nicht nur selbst keine Fehler mehr. Er/sie verhindert auch, dass andere Fehler finden.
 - * Sorry, negative Grundannahme in SESAM.
- Allerdings ist er/sie bei der Fehlerkorrektur effizienter, als jemand der sich erst einarbeiten muss.
 - * Vertrautheit mit dem Dokument

AMEISE Workshop Emden 5.-7. Juli 2007

59 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt


Hinweise (4/11)

Parallel-Arbeit

- Das QA Model fußt auf dem Wasserfall-Modell.
- Eine Folgephase kann vor Abschluss des aktuellen Meilensteins begonnen werden, aber ...
 - mindestens 50 % des Referenzdokuments müssen bereits vorhanden sein,
 - * die Unvollständigkeit wird zu Fehlern führen, die zur gegebenen Zeit korrigiert werden sollten ("correct all documents")

Hinweise (5/11)

· Partizipative Entwicklung

(insbesondere Spezifikation, Dokumentation)

- Ein Kunde entdeckt Fehler, die andere nicht finden können.
- Früh erkannte fehlende Funktionalität kann relativ günstig eingebaut werden.

AMEISE Workshop Emden 5.-7. Juli 2007

61 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Hinweise (6/11)

- · Eigenheiten des aktuellen Modells
 - Datum
 - * Der Tag wird angezeigt, Stunden, Minuten sind irrelevant.
 - * Datumsformat: Jahr/Monat/Tag/Stunde:Minute
 - * Das Modell berücksichtigt Wochenenden, aber keine Feiertage (z.B. Weihnachten, Neujahr, ...)
 - Review
 - * Wenn ein Autor Reviewer ist, werden keine Fehler gefunden.
 - Fehler
 - * korrigieren sich nicht von selbst!

Hinweise (7/11)

- Zuletzt angezeigtes Datum ist das Datum des aktuellen Tages
- Alle eingegebenen Aktionen finden an diesem Tag statt
 - "Proceed" -> Simulation schreitet um einen Tag voran
 - "Proceed n" -> Simulation schreitet um n Tage voran
- Wochenenden werden automatisch übersprungen
- Feiertage/Urlaubstage/Krankentage werden nicht berücksichtigt
- Uhrzeit ändert sich 2mal im Jahr (Sommerzeit/Winterzeit Ende März/Oktober)
- · Zeit hat im Modell (quasi) keine Bedeutung

AMEISE Workshop Emden 5.-7. Juli 2007

63 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Hinweise (8/11)

- Review:
 - Anforderungen, die einer der Gutachter als Autor erstellt hat, werden von keinem der Gutachter geprüft
- Tätigkeiten, die einem Entwickler zugewiesen werden, der nicht eingestellt ist, werden nicht bearbeitet (→ Meldung)
- alle erfolgreichen Kommandos werden sofort oder nach spätestens einem "Proceed" mit einer Nachricht bestätigt
 - sonst gilt Kommando als nicht ausgeführt

Hinweise (9/11)

- Modell lässt Aktion nicht zu? → Situtationsabhängig
 - "finish activity" (-> keine Rückmeldung, wenn entsprechender Entwickler keine Aufgabe hat)
 - "show available developers" (-> keine Rückmeldung, wenn es keine freien Entwickler gibt)
 - "show hired employees" (-> keine Rückmeldung, wenn keine Entwickler eingestellt sind)
 - nach "finish project" und "deliver system" müssen mehrere Proceeds ausgeführt werden. Auswertung des Spielverlaufs erfolgt erst nach drei Tagen -> Aufräumarbeiten
 - "integrate" (verlangt mindestens 50 % der Anforderungen im Code umgesetzt wurden – sonst wird Kommando nicht ausgeführt)

AMEISE Workshop Emden 5.-7. Juli 2007

65 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Hinweise (10/11)

- Spieleraktion bleibt ohne Wirkung?
 Folgende Fälle können auftreten:
 - führt Entwickler bestimmte Tätigkeit aus, kann ihm diese nicht nochmals zugewiesen werden (-> NOT SUCCESSFUL)
 - "release": Entwickler kann nur entlassen werden, wenn er zuvor eingestellt wurde und gerade keine Tätigkeit ausübt bzw. an keinem Review teilnimmt
 - "release": mit Entlassung wird Entwickler für eine Zeitspanne zw. 1 und 60 Tagen anderweitig verplant (-> er kann in dieser Zeit nicht wieder eingestellt werden)

Hinweise (11/11)

- Zuteilung von Aufgaben:
 - Entwickler kann zu bestimmten Zeitpunkt nur eine Aufgabe ausführen (Ausnahme: Review!), sonst:
 - Entwickler ignoriert den neuen Auftrag zunächst, führ ihn aber aus, nachdem er alte Tätigkeit beendet hat (kann mehrere Zeitschritte dauern)
 - Entwickler ignoriert den neuen Auftrag (keine Rückmeldung)
 Entwickler beendet alte Tätigkeit und wartet auf neuen

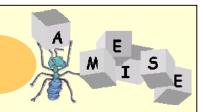
Tipp: Entwickler erst alte Tätigkeit beenden lassen, bevor man ihm eine neue zuweist.

AMEISE Workshop Emden 5.-7. Juli 2007

67 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt

Start und Ende


- Mit Kommando "deliver system" wird die Software an den Kunden übergeben
- · Kundenreaktionen werden angezeigt
- · Achtung!

Kommando "cancel project" führt zu einem Projektabbruch!!! → Spiel ist nicht auswertbar!

WICHTIG!!!

Vergessen Sie nicht den Code zu integrieren!

-> Auslieferung an den Kunden ist nur möglich, wenn mindestens 50 % der Anforderungen integriert wurden!!!

Besuchen Sie die Demo bzw. das Tutorial auf http://ameise.uni-klu.ac.at

Alles Gute für Ihre erste Simulation!

AMEISE Workshop Emden 5.-7. Juli 2007

69 / 69

© Bollin, Mittermeir Alpen-Adria Universität Klagenfurt